
Part 04 - Learning from Tensors: Gradient
Descent and Backpropagation

Maura Pintor ()

Notebook with the code used in these slides (part 1)
Notebook with the code used in these slides (part 2)

maura.pintor@unica.it

1

https://colab.research.google.com/drive/1Hz8Ig0HBpkec52RMnSa0lPuEd6JYvpy5?usp=sharing
https://colab.research.google.com/drive/18-Rn3rCGYto6up_2avG9xvPXs9p8I7NA?usp=sharing
mailto:maura.pintor@unica.it

Representing input data

As we saw in previous chapters, input data can be represented as set of feature

values

Hystorically, datasets are represented as matrices where each row is a sample,
and the features are represented in ordered columns

For example, a matrix represents a dataset of samples with
features each.

[100 × 3] 100 3

2

With general N-dimensional tensors, the representation can be changed, but we

will keep the �rst index as the sample index to keep it consistent.

Hence, the �rst dimension will always be the sample index, and the rest of the

dimensions collect generally the rest of the features, but allow more structure
than simple row vectors.

This is useful, for example, to deal with images and avoid loss of information
regarding the original shape of the images (plus, it is ready for application of

operations speci�c to images, e.g., convolutions).

3

Representing images with tensors

To use PyTorch to create image classi�ers (or in general to work with images), we

need to be able to represent images in a way that PyTorch can understand

Images are represented as collections of scalars arranged in a speci�c grid with

height x width grid points (pixels)

B/W images are represented with one single scalar per pixel

RGB images are represented with three values for each pixel (Red, Blue, Green)
In general, images can have multiple values for each pixel, representing

different features (e.g., depth, alpha, temperature, ...)

4

RGB representation

Each pixel is represented by three values, corresponding to the colors Red, Green

and Blue (RGB)

The values are often 8-bit unsigned integers, i.e., possible values in= 25628
[0, 255]

5

Loading an image
from PIL import Image
import numpy as np
import torchvision

with Image.open("dog.jpg") as im:

 im.show()

 # convert to numpy
 numpy_image = np.array(im)
 print(numpy_image)

 tensor = torchvision.transforms.ToTensor()(im)
 # the transform already normalizes the data in [0, 1]
 # we will soon know what it means
 print(tensor)

 print(tensor.shape)

https://pytorch.org/vision/0.9/transforms.html#torchvision.transforms.ToTensor

6

https://pytorch.org/vision/0.9/transforms.html#torchvision.transforms.ToTensor

Datasets

Samples are often loaded in groups, and groups of samples are called batches. In

general, when loading a dataset (or a batch), we have an additional dimension to
consider.

In traditional machine learning libraries (e.g., scikit-learn), the data
reporesentation follows the standard [num_samples, num_features], where each

sample is a (�atten) row vector, and we stack multiple samlpes in the �rst
dimension.

For example, a dataset of 300 samples represented each with 3 features will have
dimensions 300 x 3

7

Datasets

With modern libraries for deep learning (including PyTorch), the samples are not

one-dimensional anymore, but they can have arbitrary shape. In the RGB image
example, a batch of images will have 4 dimensions:

[num_samples, colors(=3), width, height]

8

Normalizing the data

A typical thing for machine learning is to normalize the data so that the values of
the pixels lie in a speci�c distribution

This means that if we have images from different sources, by applying
normalization we make sure they have similar characteristics

The operation applies to each channel the following operation: 𝑥 = 𝑥−𝑚𝑒𝑎𝑛
𝑠𝑡𝑑

9

For our case:

the minimum value will be converted to

the maximum value of will be converted to

normalizer = torchvision.transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.
normalized_tensor = normalizer(tensor)

print(normalized_tensor.shape)
normalized_flatten = normalized_tensor.flatten(start_dim=1)
print("Original tensor shape: ", normalized_tensor.shape,
 "Flattened tensor shape: ", normalized_flatten.shape)
print("Min: ", normalized_flatten.min(dim=-1)[0],
 "Max: ", normalized_flatten.max(dim=-1)[0])

0 = −10−0.5
0.5

1 = 11−0.5
0.5

10

Representing scores

When dealing with any system, we should also take care of what the outputs are.

In machine learning, the output is represented with a set of scores.

For example, in classi�cation, we have one score (i.e., continuous variable) for

each output class

We can think of them of the "probability of classes" (but keep in mind that this is

not a very well-de�ned concept)

The predicted class is assigned to the class with the highest score

11

The output of the machine learning model is the matrix of N scores. Assuming we
have 3 classes, one example is:

The winner class is , and this is often called the prediction of the machine-
learning model

𝑓(𝒙) = = =
⎛

⎝
⎜
⎜
𝑠1

𝑠2

𝑠3

⎞

⎠
⎟
⎟

⎛

⎝
⎜
⎜
0.5
0.9
−0.5

⎞

⎠
⎟
⎟

⎛

⎝
⎜
⎜
−
∗

−

⎞

⎠
⎟
⎟

𝑠2

12

Even better, we can use the argmax function to retrieve the best score

import torch
let's create a column tensor with 10 scores
scores = torch.randn(1, 10)
print(scores.argmax(dim=1))

13

And if we want to compute the scores for a batch, let's remember that the �rst

dimension is the sample index.

scores = torch.randn(4, 10)

import torch1
let's create a column tensor with 10 scores for 4 samples2

3
print(scores.argmax(dim=1))4

14

And if we want to compute the scores for a batch, let's remember that the �rst

dimension is the sample index.

scores = torch.randn(4, 10)

import torch1
let's create a column tensor with 10 scores for 4 samples2

3
print(scores.argmax(dim=1))4

What are now the dimensions of the printed tensor? What do they represent?

14.1

Learning

As seen in Part 3, Learning is just Parameter Estimation

We have to �nd the parameters to approximate the unknown function

To �nd the good parameters , we de�ne a loss (a.k.a. cost) function that we want

to minimize.

𝑓(𝐱, 𝜽) = 𝑦

𝜽

15

Learning

As we saw in previous chapters, learning involves using a loss and adjusting the
parameters with gradients.

16

Learning

Let's start with a simple linear example. Let's �t a line to a distribution of points
(regression).

import torch
from sklearn import datasets
import matplotlib.pyplot as plt

samples, labels = datasets.make_regression(n_samples=100,
 n_features=1, noise=0.5,
 random_state=42)

samples, labels = torch.from_numpy(samples), torch.from_numpy(labels)

normalization
samples -= samples.min()
samples /= samples.max()
samples = samples.ravel()

print(samples[:5], labels[:5])
plt.scatter(samples, labels)

17

18

def model(x, w, b):
 return w * x + b

def loss_fn(y_pred, y_true):
 squared_diffs = (y_pred - y_true)**2
 return squared_diffs.mean()

initial parameters
params = torch.tensor([1.0, 0.0], requires_grad=True)

19

functions for plotting line and points

def plot_line(w, b):
 x_axis = torch.linspace(0, 1, 100)
 y_axis = w * x_axis + b
 plt.plot(x_axis.detach().numpy(), y_axis.detach().numpy(), color='r')

def plot_points(samples, labels):
 plt.scatter(samples, labels)

plot_line(*params)
plot_points(samples, labels)

20

21

forward pass
loss = loss_fn(model(samples, *params), labels)
print(loss)

backward pass
loss.backward()
print(params.grad)

22

def training_loop(n_epochs, learning_rate, params, x, y):
 for epoch in range(1, n_epochs + 1):
 y_pred = model(x, *params)
 loss = loss_fn(y_pred, y)
 loss.backward()
 with torch.no_grad():
 params -= learning_rate * params.grad
 if epoch % 500 == 0:
 print('Epoch %d, Loss %f' % (epoch, float(loss)))
 params.grad.zero_()
 return params

initial parameters
params = torch.tensor([1.0, 0.0], requires_grad=True)
print(params)

final parameters
training_loop(5000, 1e-2, params, samples, labels)
print(params)

23

plot_line(*params)
plot_points(samples, labels)

24

25

Note that our code updating params is not quite as straightforward as we might

have expected.

There are two particularities.

1. We are encapsulating the update in a no_grad context using the Python with
statement. This means within the with block, the PyTorch autograd mechanism

should look away that is, not add edges to the forward graph.
2. We update params in place. This means we keep the same params tensor

around but subtract our update from it.

26

Optimizers
There are several optimization strategies and tricks that can assist convergence,

especially when models get complicated

PyTorch abstracts the optimization strategy away from the DNN code

This saves us from having to update each and every parameter to our model
ourselves

The torch module has an optim submodule where we can �nd classes
implementing different optimization algorithms

27

from torch.optim import Adam

 optimizer = Adam([params], lr=learning_rate)

 optimizer.step()

1
 2
params = torch.tensor([1.0, 0.5], requires_grad=True)3
 4
def training_loop(n_epochs, learning_rate, params, x, y):5

6
 for epoch in range(1, n_epochs + 1):7
 y_pred = model(x, *params)8
 loss = loss_fn(y_pred, y)9
 loss.backward()10

11
 if epoch % 500 == 0:12
 print('Epoch %d, Loss %f' % (epoch, float(loss)))13
 params.grad.zero_()14
 return params15
 16
print(params)17
training_loop(5000, 1e-1, params, samples, labels)18
 19
plot_line(*params)20
plot_points(samples, labels)21

28

... and to see available optimizers:

import torch.optim as optim

print(dir(optim))

29

Schedulers

As the most important hyper-parameter of our optimizer is the learning rate,
PyTorch offers learning-rate schedulers to tune it depending on some rules (e.g.,

every 10 epochs, or if the loss does not improve, or others)

 Do you know what is the difference between a parameter and an hyper-

parameter? Parameters are trainable, which means that and from the
example above are parameters.

∗

∗

𝑤 𝑏

30

from torch.optim.lr_scheduler import ReduceLROnPlateau

 scheduler = ReduceLROnPlateau(optimizer, 'min')

 scheduler.step(loss)

from torch.optim import Adam1
2

 3
params = torch.tensor([1.0, 0.5], requires_grad=True)4
 5
def training_loop(n_epochs, learning_rate, params, x, y):6
 optimizer = Adam([params], lr=learning_rate)7

8
 9
 for epoch in range(1, n_epochs + 1):10
 y_pred = model(x, *params)11
 loss = loss_fn(y_pred, y)12
 loss.backward()13
 optimizer.step()14
 if epoch % 500 == 0:15
 print('Epoch %d, Loss %f' % (epoch, float(loss)))16
 params.grad.zero_()17

18
 return params19
 20
print(params)21
training_loop(5000, 1e-1, params, samples, labels)22

23

31

From linear units to DNNs

Note that the optimizer is not the only �exible part of our training loop

For example, the model is also �exible. In order to train a neural network on the
same data and the same loss, all we would need to change is the model function

32

From linear units to DNNs

At the core of deep learning are neural networks: mathematical entities capable of
representing complicated functions through a composition of simpler functions

They combine linear functions (as the one that we just trained, basically a line)
and non-linear functions (often called activations)

The basic building block of these complicated functions is the neuron

33

The neurons

At its core, a neuron is a linear transformation of the input (for example,
multiplying the input by a number [the weight] and adding a constant [the bias])

followed by the application of a �xed nonlinear function (referred to as the
activation function).

Mathematically, we can write the neuron as

= 𝑎()𝐳𝑙 𝐰𝑙𝐳𝑙−1

34

Activation functions

Choices of the activation function are in general:

Introducing non-linearities ensures learning non-linear decision functions, which
in general �t better non-linearly-separable data

𝑎

35

Activation functions

... Are nonlinear

Repeated applications of (w*x+b) without an activation function results in a
function of the same (af�ne linear) form. The nonlinearity allows the overall

network to approximate more complex functions.

... Are differentiable

Gradients can be computed through them. Point discontinuities, as we can see in
the ReLU, are �ne. We can still compute the derivatives for the different areas.

36

Deep Neural Networks (DNNs) stack layers of neurons

The output of each layer is computed as a function of the product of and the

output of the previous layer

𝑙 𝐰𝑙

𝐳𝑙−1

37

Composing a DNN

A multi-layer network can be written as follows:

where the output of a layer of neurons is used as an input for the following layer.

x_1 = f(w_0 * x + b_0)
x_2 = f(w_1 * x_1 + b_1)
...
y = f(w_n * x_n + b_n)

38

Composing a DNN

Building models out of stacks of linear transformations followed by differentiable

activations leads to models that can approximate highly nonlinear processes and
whose parameters we can estimate surprisingly well through gradient descent.

39

Composing a DNN

With a deep neural network model, we have a universal approximator and a
method to estimate its parameters.

Starting from a generic, untrained model, we specialize it on a task by providing it
with a set of inputs and outputs and a loss function from which to backpropagate

(train)

40

Composing a DNN

Our �rst step will be to replace our naive linear model with a neural network unit.

This will be a somewhat useless step for now, but it will still be instrumental for
starting on a suf�ciently simple problem and scaling up later.

41

Composing a DNN

PyTorch has a whole submodule dedicated to neural networks, called torch.nn.

It contains the building blocks needed to create all sorts of neural network

architectures.

Those building blocks are called modules. A PyTorch module is a Python class

deriving from the nn.Module base class.

A module can have one or more Parameter instances as attributes, which are

tensors whose values are optimized during the training process.

A module can also have one or more submodules (subclasses of nn.Module) as

attributes, and it will be able to track their parameters as well.

42

Composing a DNN

we can �nd a subclass of nn.Module called nn.Linear, which applies an af�ne

transformation to its input (via the parameter attributes weight and bias) and is
equivalent to what we implemented earlier without the module.

43

def training_loop_module(n_epochs, learning_rate, model, x, y):
 optimizer = Adam(model.parameters(), lr=learning_rate)
 scheduler = ReduceLROnPlateau(optimizer, 'min')
 loss_fn = torch.nn.MSELoss() # pytorch loss
 for epoch in range(1, n_epochs + 1):
 # note that the model can take a batch (i.e., multiple samples)
 y_pred = model(x)
 loss = loss_fn(y_pred, y)
 optimizer.zero_grad() # zero grads in optimizer
 loss.backward()
 optimizer.step()
 scheduler.step(loss)
 if epoch % 500 == 0:
 print('Epoch %d, Loss %f' % (epoch, float(loss)))

linear_model = torch.nn.Linear(1, 1)

training_loop_module(5000, 1e-1, linear_model,
 samples.float().unsqueeze(1),
 labels.float().unsqueeze(1))

print(linear_model.weight.item(), linear_model.bias.item())

44

We can also de�ne now the following function to plot the output of the DNN:

def plot_module(model):
 x_axis = torch.linspace(0, 1, 100).unsqueeze(1)
 y_axis = model(x_axis)
 plt.plot(x_axis.detach().numpy(), y_axis.detach().numpy(), color='r')

plot_module(linear_model)

45

Finally, a DNN
dnn = torch.nn.Sequential(
 torch.nn.Linear(1, 10),
 torch.nn.ReLU(),
 torch.nn.Linear(10, 10),
 torch.nn.ReLU(),
 torch.nn.Linear(10, 1),
)

training_loop_module(5000, 1e-1, dnn, samples.float().unsqueeze(1), labels.float

def plot_module(model):
 x_axis = torch.linspace(0, 1, 100).unsqueeze(1)
 y_axis = model(x_axis)
 plt.plot(x_axis.detach().numpy(), y_axis.detach().numpy(), color='r')

plot_module(dnn)
plot_points(samples, labels)

46

47

Let's make the data highly non-linear
y_new = labels.clone()
y_new[samples>0.5] *= -2 # this makes the labels flip at x=0.5

dnn = torch.nn.Sequential(
 torch.nn.Linear(1, 10),
 torch.nn.ReLU(),
 torch.nn.Linear(10, 10),
 torch.nn.ReLU(),
 torch.nn.Linear(10, 1),
)

training_loop_module(5000, 1e-1, dnn, samples.float().unsqueeze(1),
 y_new.float().unsqueeze(1))

def plot_module(model):
 x_axis = torch.linspace(0, 1, 100).unsqueeze(1)
 y_axis = model(x_axis)
 plt.plot(x_axis.detach().numpy(), y_axis.detach().numpy(), color='r')

plot_module(dnn)
plot_points(samples, y_new)

48

49

Building more complicated models

Models can also be created by de�ning a class that inherits from nn.Module

class NeuralNetwork(nn.Module):
 def __init__(self):
 """Defines the layers"""
 super().__init__()
 self.fc1 = nn.Linear(1, 10)
 self.fc2 = nn.Linear(10, 10)
 self.out = nn.Linear(10, 1)
 # no need to define the relu twice
 # we can call it in the forward
 self.relu = nn.ReLU()

 def forward(self, x):
 """Defines the operations applied to x"""
 x = self.fc1(x)
 x = self.relu(x)
 x = self.fc2(x)
 x = self.relu(x)
 out = self.out(x)
 return out

50

Using __call__ rather than forward

All PyTorch-provided subclasses of nn.Module have their __call__ method de�ned

Calling an instance of nn.Module produces the same output of calling the forward

However, there is a silent error here, for which it is always recommended to use

__call__

y = model(x)
y = model.forward(x)

51

Using __call__ rather than forward

There are hidden functions that are called inside the __call__ before the forward,

and calling the forward alone would skip all these operations

Hooks are used to customize the call with user-de�ned functions, e.g., logging

functions

def __call__(self, *input, **kwargs):
 for hook in self._forward_pre_hooks.values():
 hook(self, input)

 result = self.forward(*input, **kwargs)

 for hook in self._forward_hooks.values():
 hook_result = hook(self, input, result)
 ...
 for hook in self._backward_hooks.values():
 ...
 return results

52

Learning from images

We can now move to more complicated that than the linear data

We will use a dataset of small images at �rst, then move to more complex data

53

A dataset of tiny images

The of handwritten digits has a
training set of 60,000 examples, and a test set of

10,000 examples

Each of these images has a shape of

and represents a digit from to

The labels are, as well, numbers from to

MNIST database

[28 × 28]
0 9

0 9

54

http://yann.lecun.com/exdb/mnist/

Downloading MNIST

The easiest way to download the MNIST dataset is to use the torchvision library

from torchvision import datasets
import matplotlib.pyplot as plt

data_path = 'data'
mnist_train = datasets.MNIST(data_path,
 train=True,
 download=True)
mnist_validation = datasets.MNIST(data_path,
 train=False,
 download=True)

print("samples in training dataset: ",
 len(mnist_train))

image, label = mnist_train[0]
plt.imshow(image, cmap='gray')
plt.title(f"Sample label: {label}")
plt.show()

55

Transformations

That’s all very nice, but we’ll likely need a way to convert the PIL image to a
PyTorch tensor before we can do anything with it

from torchvision import transforms

to_tensor = transforms.ToTensor()
image_as_tensor = to_tensor(image)
print(image_as_tensor.shape)

56

We can also de�ne other tranformations, for example random rotations. These are
useful to obtain data augmentations, i.e., to have arti�cial variations of the images:

random rotation between 0 an 90 degrees
rotation = transforms.RandomRotation(90)
rotated = rotation(image_as_tensor)

def display_image(image, label):
 # permute required to transform back in the PIL format
 plt.imshow(image.permute(1, 2, 0), cmap='gray')
 plt.title(f"Sample label: {label}")
 plt.show()

display_image(rotated, label)

57

And we can apply the transform to the whole dataset at loading time:

tensor_mnist_train = datasets.MNIST(data_path,
 train=True,
 download=False,
 transform=transforms.ToTensor())

sample, label = tensor_mnist_train[0]
print(type(sample), sample.dtype, sample.shape)

58

Behavior of the ToTensor transformation

Whereas the values in the original PIL image ranged from to (bits per

channel), the ToTensor transform turns the data into a 32-bit �oating point per

channel, scaling the values down from to . Let’s verify that:

0 255 8

0.0 1.0
import numpy as np
print(f"image min: {np.array(image).min()}, image max: {np.array(image).max()}")
print(f"tensor min: {sample.min()}, tensor max: {sample.max()}")

59

Normalizing the data

Let's now normalize the data so that they have mean and standard

deviaion . First, we compute the mean and standard deviation:

𝜇 = 0
𝜎 = 1

dataset = torch.stack([sample for sample, _ in tensor_mnist_train], dim=3)
print(dataset.shape)
means = dataset.view(1, -1).mean(dim=1)
stds = dataset.view(1, -1).std(dim=1)
print(means)
print(stds)
normalize = transforms.Normalize(means, stds)

60

Normalizing the data

Then we can apply now the ToTensor, chained with a normalization operation:

transformed_mnist_train = datasets.MNIST(data_path, train=True,
 download=False,
 transform=transforms.Compose([
 transforms.ToTensor(),
 normalize,]))

dataset = torch.stack([sample for sample, _ in transformed_mnist_train], dim=3)

let's verify that the mean and standard deviation are now as we want them
means = dataset.view(1, -1).mean(dim=1)
stds = dataset.view(1, -1).std(dim=1)
print(f"mean: {means}")
print(f"std: {stds}")

61

A fully connected model

Let's create a model able to process the MNIST dataset

The important part is that we have an input of features and an

output of classes

28𝑥28 = 784
10

class MNISTModel(torch.nn.Module):
 def __init__(self):
 super().__init__()
 self.fc1 = torch.nn.Linear(784, 512)
 self.fc2 = torch.nn.Linear(512, 10)
 self.relu = torch.nn.ReLU()

 def forward(self, x):
 # we have to flatten the samples that are 28x28
 x = x.view(-1, 784)
 x = self.relu(self.fc1(x))
 x = self.fc2(x)
 return x

62

Now let's create the model and get the prediction for one sample:

net = MNISTModel()

sample, label = transformed_mnist_train[0]

prediction from untrained model
out = net(sample)
print("scores:", out)

predicted class
pred = out.argmax(dim=1)
print("predicted class:", pred.item())
print("original label: ", label)

63

Loading our data in batches

To properly load data in batches, we create data loaders, that are classes to load

data dynamically from a dataset. They load batches of a speci�ed batch size and
optionally shuf�e the samples.

transformed_mnist_validation = datasets.MNIST(data_path, train=False,
 download=False,
 transform=transforms.Compose([
 transforms.ToTensor(),
 normalize,])) # same normalize as

train_loader = torch.utils.data.DataLoader(transformed_mnist_train,
 batch_size=64,
 shuffle=True)
val_loader = torch.utils.data.DataLoader(transformed_mnist_validation,
 batch_size=64,
 shuffle=False)

64

Data loaders

The dataloader can become an iterator by calling the iter function:

Or also by putting it in a for loop:

samples, labels = next(iter(train_loader))
print(samples.shape, labels.shape)

for samples, labels in train_loader:
 print(samples.shape, labels.shape)
 break # avoid doing the full loop

65

Loss functions for training

We are almost ready to train a deep neural network on the MNIST dataset. We are
only missing a proper loss function.

We need a function , where are some input-output pair.

A loss function is used to help the model determine how "wrong" it is and, based

on that error signal improve itself.

𝑙(𝑓(,))𝐱𝑖 𝑦𝑖 (,)𝐱𝑖 𝑦𝑖

66

Loss functions for training

The cross-entropy loss measures the error (or difference) between two probability

distributions. In the binary case, the cross-entropy is computed as:

Where is the predicted probability and is the label.

𝑙 = −(𝑦 log (𝑝) + (1 − 𝑦) log (1 − 𝑝))

𝑝 𝑦

import numpy as np
import matplotlib.pyplot as plt
def ce_loss_binary(p, y):
 return - y * np.log(p) + (1-y) * np.log(1-p)

y = torch.tensor(1)
p = np.linspace(0, 1, 100)
losses = [ce_loss_binary(_, y) for _ in p]

plt.xlabel("probability")
plt.ylabel("loss")
plt.plot(p, losses)

67

Cross-entropy Loss

In the multi-class classi�cation case, the cross-entropy loss is separate for each

class label and we sum the result:

It is useful when training a classi�cation model with C classes

The input is expected to contain the unnormalized logits for each class (which do
not need to be positive or sum to 1, in general)

In PyTorch we can use the class torch.nn.CrossEntropyLoss

𝑙(𝐱, 𝑦) = log(𝑓(𝐱))∑
𝑐=1

𝐶

𝑦𝑐

68

Training our model

We can �nally write the code for training our model:

learning_rate = 1e-2
optimizer = torch.optim.SGD(net.parameters(), lr=learning_rate)
loss_fn = torch.nn.CrossEntropyLoss()
epochs = 2

for epoch in range(epochs):
 for samples, labels in train_loader:
 outputs = net(samples)
 loss = loss_fn(outputs, labels)

 optimizer.zero_grad()
 loss.backward()
 optimizer.step()

 print(f"Epoch: {epoch + 1}, Loss: {loss}")

69

Evaluating our model

And for testing it:

accuracy = 0.0
total = 0
for samples, labels in train_loader:
 outputs = net(samples)
 predictions = outputs.argmax(dim=1)
 # we have to compute the total number of samples every time
 # because the last batch can be smaller than the batch size
 total += samples.shape[0]
 accuracy += (predictions.type(labels.dtype) == labels).float().sum()
accuracy = accuracy / total

print(f"Accuracy: {accuracy}")

70

An improved training loop

It't best to isolate the training and evaluation loops in functions and to keep track
of the training and validation losses to monitor the training function:

train_losses, val_losses = [], []

for epoch in range(epochs):
 train_loss = train(model, train_loader, optimizer, loss_fn)
 val_loss, accuracy = validate(model, test_loader)
 train_losses.append(train_loss)
 val_losses.append(val_loss)

import matplotlib.pyplot as plt

plt.plot(train_losses, label='train loss')
plt.plot(val_losses, label='validation loss')
plt.xlabel("epoch")
plt.ylabel("loss")
plt.legend()

71

Limits of going fully connected

With fully-connected layers, we are making every pixel count independently, and

interact with any other pixel in the combination of the next layer.

In other words, we aren’t utilizing the relative position of neighboring or far-away

pixels, since we are treating the image as one big vector of numbers.

Most importantly, if we shift the same image by one pixel or more in any

direction, the relationships between pixels will have to be relearned from scratch

In the next lecture we will see how to make the model focus on 2D

representations rather than vectorized images.

72

What are the solutions to this problem?

def shift_pixels(t):
 shift = 3
 return torch.roll(t, shift) # shifts the tensor of shift pixels

let's see how the network generalizes
augmented_mnist_validation = datasets.MNIST(data_path, train=False,
 download=False,
 transform=transforms.Compose([
 transforms.ToTensor(),
 transforms.Lambda(shift_pixels),
 normalize,]))
augmented_val_loader = torch.utils.data.DataLoader(augmented_mnist_validation,
 batch_size=64,
 shuffle=False)

images, labels = augmented_mnist_validation[0]
display_image(images, labels)

val_loss_augmented, accuracy_augmented = valid_epoch(net, augmented_val_loader,

print("accuracy: ", accuracy, "accuracy after augmentation:", accuracy_augmented

73

End of part 4
Summary:

Autograd with PyTorch

Simple regression model
Building a DNN

DNN Classi�cation (MNIST)

74

End of part 4
In the next chapter:

Convolutional neural networks

Designing a more complicated model
Tracking results and experiments

Maura Pintor ()

Notebook with the code used in these slides (part 1)

Notebook with the code used in these slides (part 2)

maura.pintor@unica.it

75

https://colab.research.google.com/drive/1Hz8Ig0HBpkec52RMnSa0lPuEd6JYvpy5?usp=sharing
https://colab.research.google.com/drive/18-Rn3rCGYto6up_2avG9xvPXs9p8I7NA?usp=sharing
mailto:maura.pintor@unica.it

