
Part 02 - Machine Learning Foundations
Maura Pintor ()maura.pintor@unica.it

1

mailto:maura.pintor@unica.it

Pattern classification

Goal: assign a label to a pattern

A pattern is a description of an object through a set of measurement called

features

2

Example

Seagull or flamingo?

 How can ML recognize a flamingo?

3

Let's use one single feature for now, and we decide to use the length of the legs.

We will call this unknown quantity

In general, flamingos' legs are longer than the seagulls'. Then, we can set a

decision rule:

𝑥

4

Let's use one single feature for now, and we decide to use the length of the legs.

We will call this unknown quantity x

In general, flamingos' legs are longer than the seagulls'. Then, we can set a

decision rule:

if x > x ∗ , it's a flamingo

4.1

Let's use one single feature for now, and we decide to use the length of the legs.

We will call this unknown quantity x

In general, flamingos' legs are longer than the seagulls'. Then, we can set a

decision rule:

if x > x ∗ , it's a flamingo

if x <= x ∗ , it's a seagull

4.2

Let's use one single feature for now, and we decide to use the length of the legs.

We will call this unknown quantity x

In general, flamingos' legs are longer than the seagulls'. Then, we can set a

decision rule:

if x > x ∗ , it's a flamingo

if x <= x ∗ , it's a seagull

But how can we estimate x ∗ ?

4.3

Training dataset

We need a set of labeled examples to compute statistics on the two classes

For example, we can estimate the average lenght of legs of all the flamingos and

all the seagulls

𝐷 = [, , , … ,]𝑥1 𝑥2 𝑥3 𝑥𝑛

5

Training dataset

6

Training dataset

However, our classifier still makes mistakes with one single feature

6.1

Training dataset

However, our classifier still makes mistakes with one single feature

How can we improve the performances?

6.2

We can use an additional feature. Let's use the wingspan. Now we can represent

each subject with two values:

= [,]𝐱𝐢 𝑥𝑖,1 𝑥𝑖,2

= [10, 7]𝐱1

7

We can use an additional feature. Let's use the wingspan. Now we can represent

each subject with two values:

xi = [xi , 1, xi , 2]

x1 = [10, 7]

7.1

More in general, we can represent patterns as d-dimensional vectors

= [, , … ,]𝐱𝐢 𝑥𝑖,1 𝑥𝑖,2 𝑥𝑖,𝑛

8

Now that we have the representation, how can we assign any pattern to a class?

9

Now that we have the representation, how can we assign any pattern to a class?

9.1

How to pick the right classifier?

We assume that there is an unknown underlying function that can map inputs

(samples) to outputs (classes)

We can start with a simple model to approximate the function

Which one is a good model for separating the two classes?

10

How to pick the right classifier?

11

How to pick the right classifier?

11.1

How to pick the right classifier?

11.2

How to pick the right classifier?

11.3

How to pick the right classifier?

11.4

More formally ...

We can write the equation of the separating line (a.k.a., linear classifier)

𝑓(𝐱) = 𝐱 + 𝑏 = + 𝑏𝐰
𝑇 ∑ 𝑑

𝑗=1 𝑤𝑗𝑥𝑗

12

More formally ...

Then we use the decision rule

if , it's a seagull

if , it's a flamingo

𝑓(𝐱) = 𝐱 + 𝑏 = + 𝑏𝐰
𝑇 ∑ 𝑑

𝑗=1 𝑤𝑗𝑥𝑗

𝑓(𝐱 < 0)

𝑓(𝐱 >= 0)

13

Let's see with an example

𝐰 = [1, 1], 𝑏 = −15

𝐱 = [10, 7]

14

Let's see with an example

w = [1, 1], b = − 15

x = [10, 7]

f(x) = w1x1 + w2x2 + b =

14.1

Let's see with an example

w = [1, 1], b = − 15

x = [10, 7]

f(x) = w1x1 + w2x2 + b =

= 1 ⋅ 10 + 1 ⋅ 7 − 15 = 17 − 15 = 2 > 0

14.2

Let's see with an example

w = [1, 1], b = − 15

x = [10, 7]

f(x) = w1x1 + w2x2 + b =

= 1 ⋅ 10 + 1 ⋅ 7 − 15 = 17 − 15 = 2 > 0

f(x) > 0 --> flamingo!

14.3

Let's see with an example

w = [1, 1], b = − 15

x = [10, 7]

f(x) = w1x1 + w2x2 + b =

= 1 ⋅ 10 + 1 ⋅ 7 − 15 = 17 − 15 = 2 > 0

f(x) > 0 --> flamingo!

What about the sample x = [7, 1]?

14.4

Multi-class classification

What happens when we have more than two classes?

one vs. all (OVA)

each classifier separates one class from all others

one vs. one (OVO)

each classifier separates one class from one other

In deep learning, in general, OVA is the most used.

15

Non-linear classifiers

What if the data is not linearly separable?

16

Non-linear classifiers

What if the data is not linearly separable?

We use tricks to find a separating function that has low error

16.1

Non-linear classifiers

What if the data is not linearly separable?

We use tricks to find a separating function that has low error

16.2

Non-linear classifiers

What if the data is not linearly separable?

We use tricks to find a separating function that has low error

We apply a non-linear transformation to the data points

16.3

Non-linear classifiers

What if the data is not linearly separable?

We use tricks to find a separating function that has low error

We apply a non-linear transformation to the data points

Then we can find a linear separation in this new parametrization

16.4

There is another solution

We can also use separate classifiers for different regions of the decision space

17

There is another solution

We can also use separate classifiers for different regions of the decision space

or ...

17.1

Deep learning

Deep Neural Networks (DNNs) stack layers of linear classifiers and non-linear

activation functions

The output of each layer is computed as a function of the product of and the

output of the previous layer

The function is called activation function and it is usually non-linear

𝑙 𝐰𝑙

𝐳𝑙−1

18

Choices of the function are in general:

Introducing non-linearities ensures learning non-linear decision functions.

= 𝑎()𝐳𝑙 𝐰𝑙𝐳𝑙−1

𝑎

19

How to find the best separator?

To evaluate the goodness of each candidate function (each value of w and b), we

define a loss function

Where:

 is the true label of sample

 is the decision function

 computed over the training set

By computing the loss over the whole training set, we get an estimate of the

quality of the predictor

ℓ

𝐿(𝐷, 𝜽) = ℓ(, 𝑓(; 𝜽))1
𝑛
∑ 𝑛

𝑖=1 𝑦𝑖 𝐱𝑖

𝑦𝑖 𝐱𝑖

𝑓(; 𝜽)𝐱𝑖

(…)1
𝑛
∑ 𝑛

𝑖=1

20

How to get the minimum loss

We define the learning problem as an optimization problem

Some simple problems have a closed form solution (you can find and

directly by solving the problem)

For others we have to rely on solvers that find an approximate solution

, = ℓ(, 𝑓(; 𝜽))𝐰
∗ 𝑏∗ argmin

𝐰,𝑏

1
𝑛
∑ 𝑛

1=1 𝑦𝑖 𝐱𝑖

𝐰
∗ 𝑏∗

21

How does a loss look like?

One example is the 0-1 loss

Recall the decision rule:

If , decision is

If , decision is

𝑓(𝐱) < 0 −1

𝑓(𝐱) >= 0 1

22

0-1 loss

y = -1, f(x) < 0 --> classification is correct

y = 1, f(x) > 0 --> classification is correct

y = -1, f(x) > 0 --> classification is wrong

y = 1, f(x) < 0 --> classification is wrong

Which we can write as

ℓ(, 𝑓(; 𝜽)) = 0 if 𝑓() > 0 else 1𝑦𝑖 𝐱𝑖 𝐱𝑖 𝑦𝑖

23

The 0-1 loss is discontinuous and hard to optimize

Finding (and) requires trying all values of (and)

It's called a NP-Hard problem

, = ℓ(, 𝑓(; 𝜽))𝐰
∗ 𝑏∗ argmin

𝐰,𝑏

1
𝑛
∑ 𝑛

𝑖=1 𝑦𝑖 𝐱𝑖

𝐰
∗ 𝑏 𝐰 𝑏

24

We can work better with smoother and convex bounds of the 0-1 loss Minimizing

these will also minimize the 0-1 loss

Hinge loss

Exponential loss

Logistic loss

ℓ(𝑦, 𝐱) = max(0, 1 − 𝑦𝑓)
ℓ(𝑦, 𝐱) = 𝑒−𝑦𝑓

ℓ(𝑦, 𝐱) = (1 +)log2 𝑒−𝑦𝑓

25

Convexity helps optimization (helps finding solutions more efficiently) and

provides guarantees on the optimality of the solution

We can now solve the problem with a solver

The most commonly-used solver is gradient descent

26

Gradient descent

The most popular algorithm for solving the optimization problem is Gradient

Descent

We use the gradient of the loss function

And iteratively update the parameters to find the optimal ones

𝐿(𝐷, 𝜽) = ℓ(, 𝑓(; 𝜽))1
𝑛
∑ 𝑛

𝑖=1 𝑦𝑖 𝐱𝑖

𝐿 = ℓ(, 𝑓(; 𝜽))∇𝜽
1
𝑛
∑ 𝑛

𝑖=1 ∇𝜽 𝑦𝑖 𝐱𝑖

27

Let’s assume that we fix all parameters but one (e.g.,)𝜃1

28

Let’s assume that we fix all parameters but one (e.g.,)𝜃1

29

Let’s assume that we fix all parameters but one (e.g.,)𝜃1

30

Let’s assume that we fix all parameters but one (e.g.,)𝜃1

31

Let’s assume that we fix all parameters but one (e.g.,)𝜃1

32

What influences the progress (and results) of the optimization?

number of steps

if we don’t take enough steps we can stop too early and far from the

optimum

33

What influences the progress (and results) of the optimization?

step size

if the step size is too small, we need many steps to reach convergence

if the step size is too big, we might overshoot the optimum

the decay of the step size is also important (how much we reduce the step

size)

34

What influences the progress (and results) of the optimization?

function that we are optimizing

there might be local minima and our optimization can get stuck in them

Try out gradient descent with this online tool:

https://fa.bianp.net/teaching/2018/eecs227at/gradient_descent.html

35

https://fa.bianp.net/teaching/2018/eecs227at/gradient_descent.html

In general, we can compute the gradient of the loss w.r.t. multiple parameters and

update the parameters simultaneously

The gradient is a vector with one component for each parameter

We can optimize the parameters of a DNN all simultaneously, by computing the

gradient of the loss w.r.t. each single parameter

36

Chain rule and backpropagation

Let's introduce briefly the chain rule, as it will be useful later to find out how to

automatically update all the parameters of a DNN with a few lines of code.

Consider two functions of a single independent variable and . The

composite function is defined as .

You can think of and as functions applied in cascade, as the output of

goes as the argument of

𝑓(𝑥) 𝑔(𝑥)
ℎ = 𝑔(𝑓(𝑥))

𝑓 𝑔 𝑓(𝑥)
𝑔(𝑥)

37

Chain rule and backpropagation

The chain rule is useful to find the derivative of the composite function

If is the output of , then we can compute the derivative of the

composed function as the product of the derivative of the "external" function w.r.t.

 and the derivative of the "internal" function w.r.t. .

=
∂ℎ
∂𝑥

∂ℎ
∂𝑢

∂𝑢
∂𝑥

𝑢 = 𝑓(𝑥) 𝑓(𝑥)

𝑢 𝑥

38

Let's see it with an example:

𝑓(𝑥) = 2𝑥 − 1 = 𝑢

𝑔(𝑥) = 𝑥2

ℎ(𝑥) = 𝑔(𝑓(𝑥)) = (2𝑥 − 1)2

= = 2𝑢 ⋅ 2 = 2(2𝑥 − 1) ⋅ 2 = 4(2𝑥 − 1)∂ℎ
∂𝑥

∂ℎ
∂𝑢

∂𝑢
∂𝑥

39

Application in machine learning

A neural network can be represented as a nested composite function

Here, are the inputs to the neural network, whereas are the outputs

Every function, , for is characterized by its own weights

𝑦 = ((… ((𝐱))))𝑓𝐾 𝑓𝐾−1 𝑓1

𝐱 𝑦

𝑓𝑖 𝑖 = 1,… , 𝐾,

40

Application in machine learning

Applying the chain rule to such a composite function allows us to work

backwards through all of the hidden layers and efficiently calculate the error

gradient of the loss function w.r.t. each weight, , of the network until we arrive

at the input

To calculate gradients of the loss with respect to weights , the chain rule is

applied:

1. Work backward through the composite function:

2. Start with the gradient of at the output layer and propagate layer by layer until

reaching .

𝑤 𝑖

𝐿 𝑤 𝑖

= ⋅ ⋅… ⋅ ⋅∂𝐿
∂𝑤 𝑖

∂𝐿
∂𝑓𝐾

∂𝑓𝐾
∂𝑓𝐾−1

∂𝑓𝑖+1
∂𝑓𝑖

∂𝑓𝑖

∂𝑤 𝑖

𝐿
𝑓1

41

Efficiency via Backpropagation

Each layer's gradients depend only on:

Its own weights .

The gradients from the next layer ().

By systematically applying the chain rule, the error gradient is efficiently

calculated for all weights.

𝑤 𝑖
∂𝐿

∂𝑓𝑖+1

42

Thus, we can update each weight so that the loss decreases

This is the basic parameter update for gradient descent. By re-iterating multiple

times and using a small enough learning rate, the model will converge to better

values of parameters (lower loss)

← − 𝛼∇𝑤 𝑖 𝑤 𝑖 𝐿𝑤 𝑖

43

Autograd

We can get the gradient of all parameters of our models by propagating

derivatives backward using the chain rule

The basic requirement is that all functions can be differentiated analytically

If this is the case, we can compute the gradient with respect to the parameters in

one sweep (even with highly-complicated models!)

44

Computing the gradient of the loss with respect to the parameters amounts to

writing the analytical expression for the derivatives and evaluating them once.

However, this composition might be complicated to write and compute

analytically

45

This is when PyTorch come to the rescue, with a PyTorch component called

autograd

PyTorch creates operations that can remember where they come from, in terms of

the operations and parent tensors that originated them, and they can

automatically provide the chain of derivatives of such operations with respect to

their inputs

This means we won’t need to derive our model by hand

Given a "forward" expression, no matter how nested, PyTorch will automatically

provide the gradient of that expression with respect to its input parameters.

46

Autograd

We will see in detail how to apply autograd in the next lessons.

47

Elements of performance evaluation

Once we train our model, we should evaluate its performance on a separate

dataset (unseen in training)

48

We can represent the predictions with the confusion matrix

TP = True Positive = Predicted positive and actual positive

TN = True Negative

FP = False Positive

FN = False Negative

49

We can represent the predictions with the confusion matrix

Correct = TP + TN

Errors = FP + FN

50

We can define metrics that measure the error (or the correct predictions), or

characterize different kinds of errors

Accuracy = =

Precision = =

Recall = =

(𝑇𝑃+𝑇𝑁)
(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)

correct
all samples

𝑇𝑃
(𝑇𝑃+𝐹𝑃)

how many predicted and really positive
all predicted positive

𝑇𝑃
(𝑇𝑃+𝐹𝑁)

how many predicted and really positive
all really positive

51

The problem with achieving zero error

Learning the best parameters for the given dataset might lead to poor

generalization

It means that the classifier is overly-specialized on the training set, but it does not

work well on unseen data

52

The problem with achieving zero error

Learning the best parameters for the given dataset might lead to poor

generalization

It means that the classifier is overly-specialized on the training set, but it does not

work well on unseen data

52.1

The problem with achieving zero error

Learning the best parameters for the given dataset might lead to poor

generalization

It means that the classifier is overly-specialized on the training set, but it does not

work well on unseen data

52.2

Overcoming overfitting

One technique to reduce overfitting is to add a penalty term to prevent the model

from giving too much weight to specific samples

53

The term enforces a penalty on the magnitude of the classifier’s

parameters to promote smoother functions across the feature space

The hyperparameter tunes the tradeoff between the loss and the penalty

larger : more regularized, at the cost of increasing the error

smaller : reduces training error but learns more complex functions

, = ℓ(, 𝑓(; 𝜽)) + 𝜆Ω(𝐰)𝐰
∗ 𝑏∗ argmin

𝐰,𝑏

1
𝑛
∑ 𝑛

𝑖=1 𝑦𝑖 𝐱𝑖

Ω(𝐰)

𝜆
𝜆
𝜆

54

Overcoming overfitting

The parameters (e.g.,) should be picked separately with a different set called

validation set

The Cross-Validation strategy allows validation on different runs with the same

dataset

𝜆

55

End of part 3
Summary:

Loss function and optimization

Optimization problems

Solvers - gradient descent

Performance evaluation, overfitting, validation

56

End of part 2
In the next chapter:

Tensors basics

Maura Pintor ()maura.pintor@unica.it

57

mailto:maura.pintor@unica.it

